Loop-Induced Modifications to the Higgs Couplings

Brian Batell
The University of Chicago

Snowmass Energy Frontier Workshop
Brookhaven National Lab
April 4, 2013

Basic questions:

- Why worry about loop-induced couplings? Naturalness!
- Precision of LHC vs. future facility
- Can (loop-induced) Higgs coupling measurements probe new states beyond direct reach of LHC? Yes!
- How much sensitivity does a future facility buy?

See also talks by T. Han and I. Low at Princeton Higgs Snowmass Workshop http://physics.princeton.edu/indico/conferenceDisplay.py?confld=127

Loop-induced Higgs couplings in the Standard Model

$$\sim \frac{\alpha_s}{12\pi v} h G^a_{\mu\nu} G^{\mu\nu\alpha}$$

- Dominant production mechanism at LHC!
- Most sensitive search channel for 125 GeV Higgs
- Very susceptible to New Physics!

Status of $hgg, h\gamma\gamma$

$h \to Z\gamma$ (not yet)

Should eventually be able to probe SM rate using $\ell^+\ell^-\gamma$ channel

What level of precision can we hope to achieve?

$$g_{hAA} = (1 + \Delta_A)g_{hAA}^{SM}$$

[Peskin '12]

 $g(hAA)/g(hAA)|_{SM}$ -1 LHC/ILC1/ILC/ILCTeV

[Klute et al.'13]

For $h\gamma\gamma, hgg$

LHC: ~ 10% level

Future facility: ~ few % level

Noticeably absent is $h\gamma Z$; should be revisited!

Naturalness

$$\Delta m_h^2 \sim \frac{3y_t^2}{8\pi^2} \Lambda_{\rm UV}^2$$

Motivates top-partners

New loop-induced couplings

Tree level modifications loop level modifications

Extended scalar sector

MSSM (Type 2 2HDM)

$$\mathcal{L} \supset -\bar{u}_R Y_u Q H_u + \bar{d}_R Y_d Q H_d + \bar{e}_R Y_e L H_d + \text{h.c.}$$

$$\frac{y_{htt}}{y_{htt}^{\text{SM}}} = \frac{\cos \alpha}{\sin \beta} \qquad \frac{g_{hVV}}{g_{hVV}^{\text{SM}}} = \sin(\beta - \alpha)$$

Compositeness

$$\Sigma = e^{i\sigma^a \pi^a/v}$$

$$\mathcal{L} = \frac{v^2}{4} \text{Tr}[(D_{\mu}\Sigma)^{\dagger}(D^{\mu}\Sigma)] \left(1 + 2a\frac{h}{v} + \dots\right) - m_i \bar{\psi}_{Li}\Sigma \left(1 + c\frac{h}{v} + \dots\right) \psi_{Ri}$$

$$a, c \approx 1 + \mathcal{O}(v^2/f^2)$$

Current Stop limits

How high in $m_{\tilde{t}_1}$ can we go at LHC?

Reach for top partners

$$pp o t \overline{t} + \cancel{E}_T$$
 (Semi-leptonic)

Difficult to go beyond ~ TeV in mass reach, model dependence Can Higgs coupling measurements do better?

$$\Delta_g^{\tilde{t}} \simeq \frac{1}{4} \left[m_t^2 \left(\frac{1}{m_{\tilde{t}_1}^2} + \frac{1}{m_{\tilde{t}_2}^2} \right) - \frac{1}{4} \left(\frac{m_{\tilde{t}_2}}{m_{\tilde{t}_1}} - \frac{m_{\tilde{t}_1}}{m_{\tilde{t}_2}} \right)^2 \sin^2 2\theta_{\tilde{t}} \right]$$

New charged/weakly interacting particles

Can come along with Higgs, top partners in natural theories

Dark matter is neutral - may be part of an electroweak multiplet

New charged states

 $\frac{\dot{\cdot}}{----}\chi^{\pm}$

Can couple to the Higgs

New loop-induced couplings

Difficult to probe directly at LHC

Chargino

$$\Delta_{\gamma}^{\tilde{C}} \approx -\frac{8/3}{(-6.5)} \frac{m_W^2 \sin 2\beta}{M_2 \mu - m_W^2 \sin 2\beta}$$

Can probe 300 - 400 GeV charginos for small an eta

Stau

$$\Delta_{\gamma}^{\tilde{\tau}} \simeq \frac{1}{12} \frac{1}{6.5} \left(\frac{m_{\tilde{\tau}_2}}{m_{\tilde{\tau}_1}} - \frac{m_{\tilde{\tau}_1}}{m_{\tilde{\tau}_2}} \right)^2 \sin^2 2\theta_{\tilde{\tau}}$$

Difficult to probe at LHC, see e.g.

[Carena, Gori, Shah, Wagner, Wang, '12]

Basic questions:

- Why worry about loop-induced couplings? Naturalness!
 - Ultimate reach of direct searches for top-partners and kin at LHC?
 - Size of deviations in Higgs couplings caused by such particles?
- Precision of LHC vs. future facility
 - Improvements in Higgs coupling measurements (new strategies)
 - Improved estimates for ultimate reach
 - What about $h\gamma Z$ at future facilities?
- Can (loop-induced) Higgs coupling measurements probe new states beyond direct reach of LHC? Yes!
 - More precise statements are needed...
 - What models? Which range of masses and couplings?
- How much sensitivity does a future facility buy?
 - Translate Higgs couplings studies to models